Interpolation of Level Sets for Equimeasurable Functions
نویسندگان
چکیده
منابع مشابه
Research on the Center Sets for Radial Basis Functions Interpolation
Radial basis functions are powerful meshfree methods for multivariate interpolation for scattered data. But both the approximation quality and stability depend on the distribution of the center set. Many methods such as so called thinning algorithm, greedy algorithm, arclength equipartition like algorithm and k-means clustering algorithm are constructed for center choosing. But all these method...
متن کاملLevel Sets and Distance Functions
This paper is concerned with the simulation of the Partial Diierential Equation (PDE) driven evolution of a closed surface by means of an implicit representation. In most applications, the natural choice for the implicit representation is the signed distance function to the closed surface. Osher and Sethian propose to evolve the distance function with a Hamilton-Jacobi equation. Unfortunately t...
متن کاملLevel Sets of Functions and Symmetry Sets of Surface Sections
We prove that the level sets of a real C function of two variables near a non-degenerate critical point are of class C [s/2] and apply this to the study of planar sections of surfaces close to the singular section by the tangent plane at an elliptic or hyperbolic point, and in particular at an umbilic point. We go on to use the results to study symmetry sets of the planar sections. We also anal...
متن کاملLevel sets and minimum volume sets of probability density functions
Summarizing the whole support of a random variable into minimum volume sets of its probability density function is studied in the paper. We prove that the level sets of a probability density function correspond to minimum volume sets and also determine the conditions for which the inverse proposition is verified. The distribution function of the level cuts of a density function is also introduc...
متن کاملShaping Level Sets with Submodular Functions
We consider a class of sparsity-inducing regularization terms based on submodular functions. While previous work has focused on non-decreasing functions, we explore symmetric submodular functions and their Lovász extensions. We show that the Lovász extension may be seen as the convex envelope of a function that depends on level sets (i.e., the set of indices whose corresponding components of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1998
ISSN: 0022-247X
DOI: 10.1006/jmaa.1997.5901